Detector R&D

VANDERBILT

UNIVERSITY
SOURAV TARAFDAR
WEIZHUANG PENG
JULIA VELKOVSKA
SYLVIA MORROW
VICKI GREEN

מכוז ויצמו למדע

MIRTA DUMANCIC

VLADIMIR PESKOV

UN

SASHA MILOV

LIOR ARAZI

Bob Azmoun
Craig Woody
Martin Purschke
Alexander Kiselev

BROOKH AVEN

NATIONAL LABORATORY

Stony Brook

UniversityTom Hemmick

Nils Feege Carlos Perez Prakhar Garg Klaus Dehmelt Veronica Canoa Florida Institute of Technology
Aiwu Zhang
KOTOV

Niveditha Ramasubramanian.

The goal of the R&D program

The TPC concept is heavily based on ALICE studies

By working it this way we benefit from a gigantic effort ALICE invested to operate TPC at the highest rates, however, we do:

- need to optimize ALICE concept to RHIC needs
- prototype and test TPC elements
- not take critical parameters for granted
- not stop at what ALICE achieved

We have a crew of people who built PHENIX tracker and who worked out ALICE concept to built the sPHENIX TPC

And the EIC detector in the future.

Who are the people

PHENIX Drift Chamber
PHENIX MPC-EX
PHENIX RICH
PHENIX HBD

PHENIX PET

Gas mixing post

post

PHENIX PC1
PHENIX HBD
CERES TPC
CERES RICH
CERES PC

VANDERBILT *

UNIVERSITY

PHENIX PC2/PC3
PHENIX RPC
E864 and E814 Straw chambers

PHENIX DC CBM RICH

Technological

table

Current R&D

10cm drift

10x10cm² 4-layer GEM

Pure CF₄: 7.5cm/us

RCDAQ readout with 40MHz APV25/SRS

Zigzag (chevron) pad plane

Pads 2x10mm²

The TPC mode: 3D tracks

Charge sharing by 2mm pads allows using centroid to reconstruct x-coordinate

y-coordinate is measured by timing the charge arrival

y&z-coordinate (padrow) → 3° peak as the beam angle

The TPC Prototyping: pads

Optimize resolution: More sharing – More accuracy

Less sharing – Less occupancy

Goal: 100um resolution with 2mm pad structure

Linearity across the structure

Chevron patterns guided by simulation

Manufactured for testing in the lab condition

X-Y scan facility with collimated X-ray source

Pads: simulation

Chevron pattern is matched to the size of the avalanche

No avalanches in contained in a single pad

No pad collects more than 85% of total charge

Minimize dependence on the avalanche size (200-600 um)

Minimize non-linearity along the pads

Choose design insensitive to small perturbations: variation of pad sizes, irregularities in gaps between pads, trace thickness, field distortions

2D Gaussian with N(e⁻)×Gain+Noise

Pad response with field distortion (to be added) and cross talks

Analyze resolution and non-linearity

Pads: measurement

Reconstructed vs. nominal (measured)

Residual distortion

Ideally, we would like to have no distortions

In reality it may not be possible.

Small distortions can be measured and corrected

Correction applied

Pads: improvement

Pad hits -> Track resolution

Single pad clusters are not very beneficial for the tack resolution

Hit quality → Track resolution

Number of space points with 2 fired pads plays critical role

Field Cage

700

How mechanical tolerances affect the the drift field?

Using ANSYS

Drift Direction mm

700

200

100

100

At the moment drift is 28 cm

Electrostatic Vector Sum, Deviation from Nominal Drift (

Sasha Milov

Radius mm

Detector R&D

700

600

Tracker review Sept 7, 2016

Basic gas properties

IBF setup

IBF measurement

IBF results

Gain ~2X10³

Element	S1	S2	S3	S4	S5
Drift	0.4	0.4	0.4	0.4	0.4
GEM1 (V)	275	270	245	320	300
Tr. 1 (kV/cm)	4	4	4	4	4
GEM2 (V)	255	255	235	235	285
Tr. 2 (kV/cm)	2	2	2	2	2
GEM 3 (V)	270	275	295	305	295
Tr. 3 (kV/cm)	0.1	0.1	0.1	0.1	0.1
GEM 4 (V)	360	355	370	385	310
Extr. (kV/cm)	4	4	4	4	4
Resolution %	11	14	16	20	10
IBF %	1.0	0.6	0.4	0.3	1.5

Ne2K

ALICE: $Ne/CO_2/N_2$ (90/10/5) T2K: $Ar/CF_4/iC_4H_{10}$ (95/3/2)

Ne2K: Ne/CF₄/iC₄H₁₀ (95/3/2)

Stable working point, lower diffusion

Ne2K has small gas fractions,

← no matter how modern the lab is,
flow controllers must be calibrated.

Asian

Sasha Milov

Beyond the TPC

Mini TPCČ

A step towards EIC: TPC and Cherenkov detector are compatible in gas and commentary in geometry

Chromium GEMs

Thin GEMs are "thick". About 50% of GEM mass is copper

Copperless (Cr-GEM) gives uniform response, aging properties under study

"Frameless" GEMs

GEMs do not need heavy frames, there is no electrostatic force.

Smaller mass Less dead areas Easier to evaporate CsI

Summary & outlook

Beam tested Mini-TPC prototype Prototype taking beam data in TPC mode with very simple electronics Results show that performance goals can be met R&D is ongoing in many directions Optimization of the TPC gas mixture Gain ongoing **IBF** ongoing Drift velocity can be done Diffusion can be done Discharge rates planned Optimization of the readout element Number of layers planned GEM design (pitch, cobra, etc.) planned Additional meshes can be done GEM structure (Cr-GEM) ongoing Other elements (µ-MEGAs, 3D-mesh) can be done, lesser priority Technical R&D and calculations Optimizing chevron design ongoing Field cage ongoing Laser system planned **Electronics integration** planned Facility upgrades and Q&A lines planned/ongoing